Mixing Least - Squares Estimators

نویسنده

  • CHRISTOPHE GIRAUD
چکیده

We propose a procedure to handle the problem of Gaussian regression when the variance is unknown. We mix least-squares estimators from various models according to a procedure inspired by that of Leung and Barron [17]. We show that in some cases the resulting estimator is a simple shrinkage estimator. We then apply this procedure in various statistical settings such as linear regression or adaptive estimation in Besov spaces. Our results provide non-asymptotic risk bounds for the Euclidean risk of the estimator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixing least-squares estimators when the variance is unknown

We propose a procedure to handle the problem of Gaussian regression when the variance is unknown. We mix least-squares estimators from various models according to a procedure inspired by that of Leung and Barron [IEEE Trans. Inform. Theory 52 (2006) 3396–3410]. We show that in some cases, the resulting estimator is a simple shrinkage estimator. We then apply this procedure to perform adaptive e...

متن کامل

Memory-Universal Prediction of Stationary Random Processes

We consider the problem of one-step-ahead prediction of a real-valued, stationary, strongly mixing random process fXig1i= 1. The best mean-square predictor of X0 is its conditional mean given the entire infinite past fXig 1 i= 1. Given a sequence of observations X1 X2 XN , we propose estimators for the conditional mean based on sequences of parametric models of increasing memory and of increasi...

متن کامل

Limiting distributions for explosive PAR(1) time series with strongly mixing innovation

This work deals with the limiting distribution of the least squares estimators of the coefficients ar of an explosive periodic autoregressive of order 1 (PAR(1)) time series Xr = arXr−1+ur when the innovation {uk} is strongly mixing. More precisely {ar} is a periodic sequence of real numbers with period P > 0 and such that ∏P r=1 |ar| > 1. The time series {ur} is periodically distributed with t...

متن کامل

The equalities of ordinary least-squares estimators and best linear unbiased estimators for the restricted linear model

We investigate in this paper a variety of equalities for the ordinary least-squares estimators and the best linear unbiased estimators under the general linear (Gauss-Markov) model {y, Xβ, σΣ} and the restrained model {y, Xβ |Aβ = b, σΣ}.

متن کامل

The equality of OLS and GLS estimators in the linear regression model when the disturbances are spatially correlated

Necessary and su cient conditions for the equality of ordinary least squares and generalized least squares estimators in the linear regression model with rst order spatial error processes are given

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008